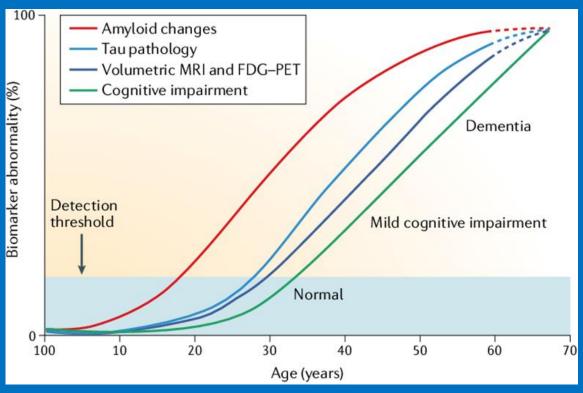
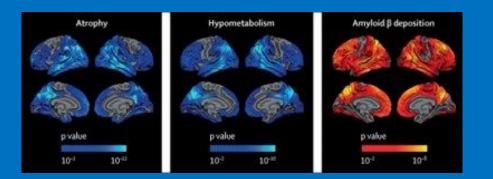


SLEEP AND ALZHEIMER'S DISEASE IN DOWN SYNDROME

Sigan L. Hartley, PhD 100 Women Distinguished Chair in Human Ecology Waisman Center Investigator Associate Professor, HDFS

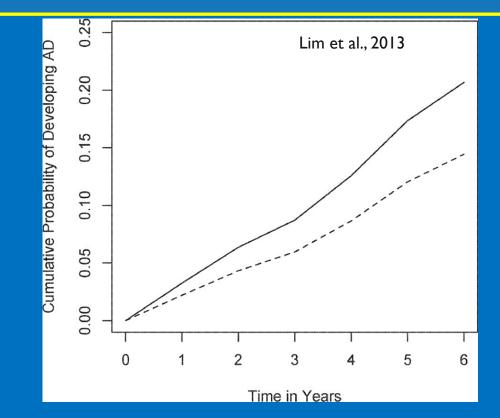

University of Wisconsin-Madison


ALZHEIMER'S DISEASE (AD) AND DOWN SYNDROME (DS)

Fortea et al., 2020; Lao et al., 2017; Zammit et al., 2020; Head & Lott, 2019

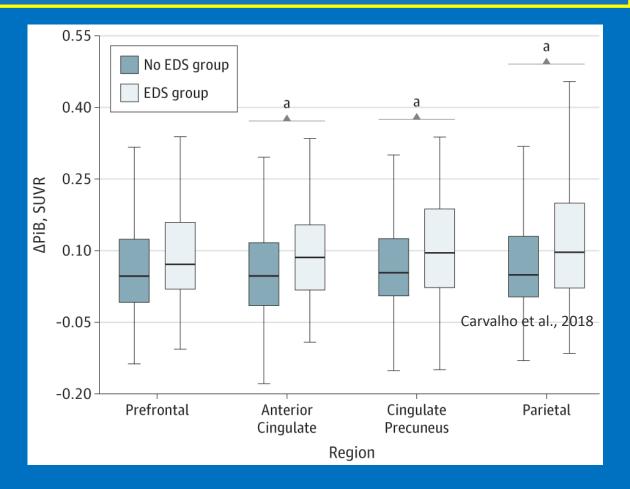
Aβ plagues by age 40 yrs (Fortea et al., 2020; Lao et al., 2017; Zammit et al., 2021)

- Variability in age of onset
- AD dementia: late 40s-70s (Holland et al., 2000; Lai et al., 1989; Tyrrell et al., 2001)

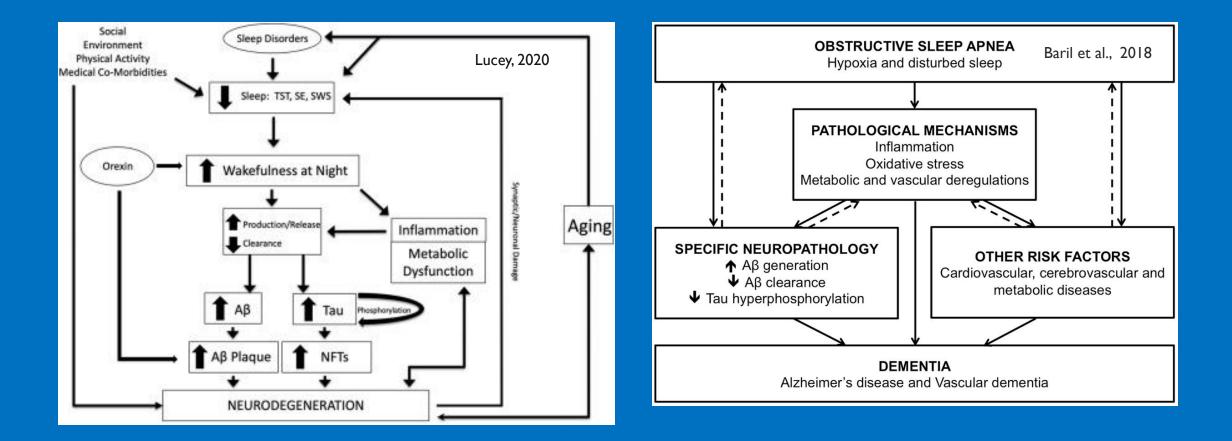


SLEEP AND AD OUTSIDE OF DS

- Evidence from other AD populations of link between sleep and AD
 - Sleep alternations precede diagnosis of AD dementia and is linked to early cognitive declines (Lim et al. 2013; Xu et al., 2011)


Expected risk of AD. The model predicted risk of AD for two hypothetical average participants with high (Solid line: 90^{th} percentile; $k_{RA} = 0.036$) and low (Dotted line: 10^{th} percentile; $k_{RA} = 0.021$) levels of sleep fragmentation.

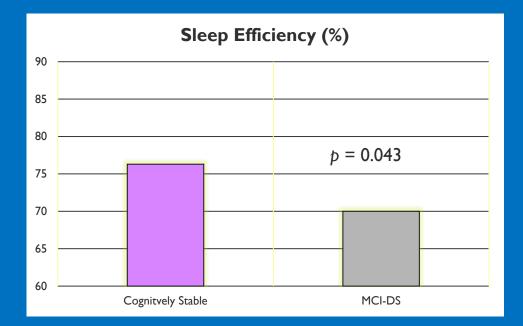
SLEEP AND AD OUTSIDE OF DS


- Evidence from both autosomal dominate and sporadic late onset AD of link between sleep and AD
 - Sleep alterations associated AD pathology such as CSF and PET Aβ and tau (e.g., Spira et al., 2013; Lucey et al., 2019; Mander et al. 2015)

SLEEP DURATION AND DISRUPTIONS AND AD

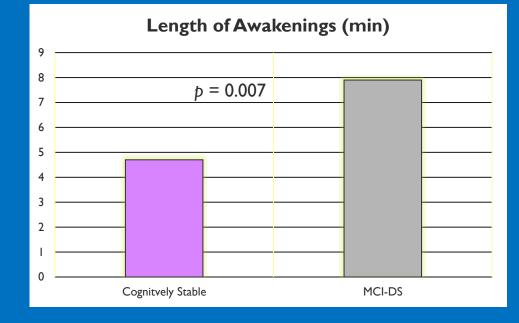
DISRUPTED SLEEP IN PEOPLE WITH DS

- Length of nighttime awakenings (LOA) associated
 with worse EF, memory, and motor control and
 planning in non-demented adults with DS
- LOA positively associated striatal PET Aβ in non-demented adults with DS


Domain	Measure	WASO	SE	NOA	LOA
	Free & Cued	283	.256+	.094	259
Norking nemory	Cued Recall Intrusions	.239	280	.049	.291*
	Rivermead	.073	132	.120	.156
	Digit Span Forward	004	.074	171	066
Executive Functioning	Digit Span backward	.048	.086	.286+	154
	Cat & Dog	.074	153	.009	.358*
1otor Planning & Control	Purdue Pegboard	179	.198	.038	302*
PET Amyloid-β	Striatum SUVR	.012	030	115	.323*

Cody et al., 220, Neurobiology of Aging

SLEEP DISRUPTIONS AND AD IN PEOPLE WITH DS



- Averages of other sleep indices
 - Total Sleep Time: 6.8 hours (SD = 1.1)
 - Wake After Sleep Onset: 113.4 minutes (SD = 41.2)
 - Number of Awakenings: 23.3 (SD = 8.1)

ALZHEIMER'S BIOMARKER CONSORTIUM- DOWN SYNDROME

Cody et al., 2020

SLEEP AND WHITE MATTER IN PEOPLE WITH DS

						Fleming et al., 2021		TST ^{1,2}	WASO ^{1,2}	SE ^{1,2}	NOA ^{1,2}	LOA ^{1,2}	MI ^{1,2}	SFI ^{1,2}	OSAI
		ntegrity link ry (Bazydlo				Superior longitudinal fasciculus, Left FA	Corr.	.233	240	.323	356	206	307	284	151
2021)			ce an,			Superi or lon gitudinal Fasciculus, Right FA	Corr.	.135	220	.279	238	264	291	193	190
		P	SP.	0.597	/	Inferior longitudinal fasciculus Left, FA	Corr.	.295	204	.328	.027	425*	317	210	229
		(¥:¥)				Inferior longitudinal fasciculus, Right FA	Corr.	.279	280	.387*	.081	614*	430*	323	373*
1	34	N. K.	S.S.			Superior longitudinal fasciculus, Left MD	Corr.	398*	.131	216	.222	.053	.219	.203	111
R	100 m		L			Superior longitudinal fasciculus, Right MD	Corr.	201	.007	092	.003	.124	.130	.064	.213
		38%×	Str.	I		Inferior longitudinal fasciculus, Left MD	Corr.	025	243	.224	218	196	288	313	054
		At an				Inferior longitudinal fasciculus, Right MD	Corr.	195	092	021	255	.167	.096	.034	.266
Sec.	Series &	A Borry	dlo ot al 2021			Note.TST = total sleep wakenings: LOA = lengt						•			

awakenings; LOA = length of awakenings; MI = movement index; SFI = sleep fragmentation index; OSA = obstructive sleep apnea *p <.05. 1 = controlling for age; 2 = controlling for # valid nights of actigraphy data.

Bazydlo et al., 2021

0.2

SLEEP DISORDERED BREATHING - OSA

- OSA in 30-50% of children (Hill et al., 2020; Stores & Stores, 2013; Tietze et al., 2012)
- 50 to 90% in adults with DS based on informant report (Marcus et al., 1991)and objective measures (Resta et al., 2003;Trois et al., 2009)

David Plante, MD

SLEEP DISORDERED BREATHING

- ABC-DS Caregiver -reported sleep apnea (baseline U01; N = 289)
 - 35% diagnosed with OSA
 - 62% actively being treated, often partial compliance
- WatchPAT 300
 - 55 consented
 - 49 (89%) completed with valid data
 - 6 (11%) could not complete
 - Dementia, took off finger probe, failure turning on

Fleming et al., in prep

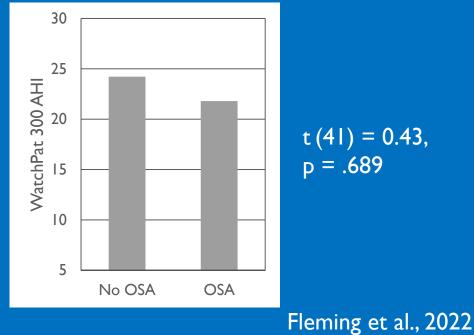
SLEEP DISORDERED BREATHING

Apnea Hypopnea Index (AHI)							
Severity	Definition	N (%)					
None/Minimal	< 5 per hr	4 (8.5%)					
Mild	≥ 5 but < 15 per hr	14 (29.8%)					
Moderate	≥ I5 but < 30 per hr	11 (23.4%0					
Severe	≥30 per hr	12 (25.5%)					

AHI = number of apneas or hypopneas recorded during the study per hour of sleep

	M (SD)	Range
AHI	22.71 (20.37)	1.90-98.10
Percent of REM (%)	22.70 (7.80)	5.70-39.60
Latency to REM (mins)	106.93 (49.52)	37.00-239.00
Mean Oxygen Saturation (%)	93.90 (2.72)	81.00-98.00

Fleming et al., 2022


ALZHEIMER'S BIOMARKER CONSORTIUM- DOWN SYNDROME

ABC-DS

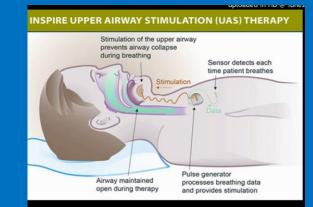
SLEEP DISORDERED BREATHING

	No reported OSA	Reported OSA
WatchPAT No OSA	24%	0%
WatchPAT OSA	76%	100%
$X^{2}(1,41) = 5.28, p = .022$		
	No reported OSA	Reported OSA
AHI None/Minimal	24%	0%
AHI Mild	24%	45%
AHI Moderate	29%	25%
AHI Severe	24%	30%
	100%	100%

 $X^2(3,39) = 6.12, p = .106$

SLEEP DISORDERED BREATHING AND WHM

Lao et al., 2022


POTENTIAL TREATMENT CONSIDERATIONS

- Regular Screenings for OSA
- Treatment of OSA
 - Positive airway pressure devices
 - In middle-aged adults without Down syndrome, linked to reduction in CSF Aβ and tau (e.g., Ju et al., 2019)
 - Compliance can be difficult (e.g., Simpson et al., 2018)
 - But, with education and support good compliance has been reported in adults with DS (Gimenez et al., 2022)
 - Other treatment options
 - Hypoglassal nerve stimulator

ACKNOWLEDGEMENTS

Coauthors of discussed work:

Sigan Hartley, Brad Christian, Benjamin Handen, Austin Bazydlo, Annie Cohen, Andy Alexander, Beau Ances, Ozioma Okonkwo, Dana Tudorascu, William Klunk, David Plante, Jamie Cohen, Cody Karly, Brianna Piro-Gambetti, Patrick Lao, and Matthew Zammit

Funding: NIA R01 AG070028; U01 AG051406; U01 AG051412; U19AG068064

