Recent research advances and clinical trials benefiting people with Down syndrome

September 15th, 2023
Joaquin M. Espinosa, PhD
The Crnic Institute is the largest center for Down syndrome research in the world

Serving people with Down syndrome through advanced biomedical research leading to improved medical care

60+ research teams 200+ scientists 200+ scientific publications since 2012
People with Down syndrome have a different ‘clinical risk profile’

Common (but variable) traits:
- Stunted growth
- Neurodevelopmental delays
- Early ageing

To help people with Down syndrome live longer and healthier lives, we must study the **co-occurring conditions** of Down syndrome.

Cancer
Atherosclerosis
Hypertension
Allergies
Autoimmunity
Alzheimer’s
Leukemias
COVID-19

Congenital heart disease, autism spectrum disorders, seizures disorders, and more…
An extra copy of chromosome 21 modulates the appearance and severity of major medical conditions

How does an extra copy of this little piece of DNA cause the developmental and clinical hallmarks of Down syndrome?

Which exact genes (out of ~200) encoded on chromosome 21 cause the various features of Down syndrome?

How could we counteract the undesired effects of chromosome triplication and gene overdose to benefit people with Down syndrome?
Diversity = discoveries

Persons with Down syndrome will teach us how to help them

They are dealing with the trisomy in their own unique personal way

Not two of them are the same, each of them can teach us something new

What factors define the ultimate clinical impacts of the extra chromosome?
The Crnic Institute Human Trisome Project (HTP)

A large and diverse cohort study with deep clinical data, a multidimensional biobank, and a public researcher portal

www.trisome.org

Thousands of datasets generated

- 900+ Clinical histories
- 500+ Metabolomes
- 400+ Genomes
- 400+ Immune maps
- 500+ Transcriptomes
- 500+ Microbiomes

30+ Projects supported

20+ Papers published / under review

More than 1100 participants recruited since 2016!

People with Down syndrome love to participate in research!
An example of translational science: from the petri dish to a clinical trial in just four years

Trisomy 21 consistently activates the interferon response

Katelyn D Sullivan1,2,3,4, Hannah C Lewis1,2, Amanda A Hill1,2, Ahwan Pandey1,2,3,4, Leisa P Jackson1,2,3,4, Joseph M Cabral1,3,4, Keith P Smith1, L Alexander Liggett1,5, Eliana B Gomez1,3,4, Matthew D Galbraith1,2,3,4, James DeGregori1,5,6,7,8,9, Joaquín M Espinosa1,2,3,4,

2016 2020

Tofacitinib for Immune Skin Conditions in Down Syndrome
ClinicalTrials.gov Identifier: NCT04246372
Recruitment Status 🔄: Recruiting
First Posted 📅: January 29, 2020
Last Update Posted 📅: February 16, 2021
See Contacts and Locations
>60% of adults with Down syndrome have been diagnosed with at least one autoimmune condition

>50% of people with Down syndrome have autoimmune thyroid disease (AITD), leading to hyperthyroidism or hypothyroidism

>25% adults with Down syndrome have been diagnosed with one or more autoimmune skin conditions

~10% of adults with Down syndrome have been diagnosed with celiac disease

Type I diabetes, ‘Down syndrome arthropathy’, and other, more rare autoimmune conditions, are also more common.
Autoimmunity in a nutshell:

Good: self-tolerance

- You are fine!
- I'm innocent!

Bad: self-harm

- Invader! Attack!
- But I'm one of you

Adapted from Advanx Health blog
People with Down syndrome have hyperactive interferon signaling

What is interferon signaling?

• Interferon signaling is an important part of the immune system involved in the anti-viral defense

• Interferons are ‘cytokines’ that activate many different types of immune cells

• Interferon hyperactivity is a known risk factor for autoimmunity
Why do people with Down syndrome have hyperactive interferon signaling?

The interferon receptors are encoded on chromosome 21! People with Down syndrome ‘over-produce’ interferon receptors
Interferon receptor ‘overdose’ is not good

- An extra copy of the interferon receptors leads to ‘over-reaction’ throughout the immune system.

- Interferon hyperactivity can cause the immune system to make mistakes and attack healthy tissues.

- Chronic interferon hyperactivity could lead to exhaustion of the immune system later in life.
Would drugs that decrease the interferon response improve the health of persons with Down syndrome?
Approved therapies that decrease the interferon response: JAK inhibitors

<table>
<thead>
<tr>
<th>Target</th>
<th>JAK1/3</th>
<th>JAK1/2</th>
<th>JAK1</th>
<th>JAK1/2</th>
<th>JAK1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rheumatoid arthritis</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Psoriatic arthritis</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Polyarticular course JIA</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ulcerative colitis</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atopic dermatitis</td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COVID-19</td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alopecia areata</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chron’s disease</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Polycythemia vera</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>Ankylosing spondylitis</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Myelofibrosis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>GVHD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>Axial spondylarthritis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
</tr>
</tbody>
</table>

There are many JAK inhibitors approved for 13 different indications!

These medicines are used by rheumatologists, dermatologists, gastroenterologists, hematologists and more!

Could JAK inhibitors ‘normalize’ the immune system in Down syndrome?
JAK inhibitors could attenuate the ill effects of interferon receptor overdose

JAK inhibitors are small molecules designed to inhibit the JAK enzymes acting ‘downstream’ of the interferon receptors.

JAK inhibitors are taken daily orally as pills and have a short ‘half-life’ in the body.

The action of JAK inhibitors is fully reversible, as they are rapidly cleared from the human body within hours.
Crnic Institute’s clinical trial for JAK inhibition in Down syndrome

Treating five autoimmune skin conditions in one trial

Alopecia areata (patchy hair loss)
Hidradenitis suppurativa (boils)
Atopic dermatitis (eczema)
Psoriasis
Vitiligo

All five conditions are more common in people with Down syndrome

More than 25% of adults with Down syndrome have been affected by one of these conditions

4-9 months of treatment with the FDA-approved JAK inhibitor Tofacitinib (Xeljanz)

Funded by:

NIH
The INCLUDE Project
NIH National Institute of Arthritis and Musculoskeletal and Skin Diseases
Study Objectives and Design

- Individuals with Down syndrome ages 12 – 50
- Everyone receives the medicine
- Travel and lodging expenses are covered

Goal 1: Define the safety profile in Down syndrome.
Goal 2: Determine the impact on immune dysregulation.
Goal 3: Define the impact on immune skin conditions.
Goal 4: Characterize impact on cognition and quality of life.

Is it safe?
Is it effective?
What are all the possible benefits of normalizing the immune system?
Top level results

Analysis of first 10 participants

- **Zero** serious adverse events
- 6/6 participants with alopecia areata experienced hair regrowth, to varying degrees
- 2/2 participants with atopic dermatitis saw complete remission
- 1/1 participant with psoriasis saw complete remission
- 2/5 participants showed improvements in hidradenitis suppurativa

Norris Dunnick
Wallace Gurnee
Patel Fidler
Rachubinski
Benefits going well beyond skin deep!

- All participants showed normalized immune markers.
- 7/7 participants with autoimmune thyroid disease displayed decreased levels of ‘autoantibodies’
- Significant improvements in measures of spatial memory, visuomotor function, and anxiety/depression scores.
- 7/10 participants continue to take the medicine with a prescription.
Male, 17 years old, alopecia areata

When a picture is worth a thousand words
Male, 17 years old, alopecia areata

When a picture is worth a thousand words

Participant referred known as ‘Ed Sheeran’ to the research team
Participants travel from all over the world to participate

When a picture is worth a thousand words

Before 4 months

Before 9 months

Female, 30 years old from Australia!

Female, 26 years old from Texas!

Stopping the autoimmune attack to the scalp
Male, 40 years old – Psoriatic arthritis

When a picture is worth a thousand words

Participant monitored outside of the trial at the University of Vermont Medical Center
Female, 28 years old
History of Down syndrome Regression Disorder

Clear improvement in motor function as measured by the NEPSY II test

- Before treatment, the participant was receiving electroconvulsive therapy (ECT) three times a week
- Today, the participant is not receiving ECT or any other medication except tofacitinib.
- The benefits are so obvious that participant was prescribed tofacitinib ‘off-label’ by neuroimmunologist, and both Pfizer and Medicaid agreed to pay for it.
- Participant will be presenting at this conference!
Down syndrome Regression Disorder (DSRD)

- A rare but devastating condition characterized by catatonia, loss of speech, depersonalization, loss of ability to perform activities of daily living, hallucinations, delusions, and aggression.

- A subset of DSRD cases are associated with signs of immune dysregulation affecting the central nervous system (CNS), often associated with preceding immune trigger events.

- Is DSRD an autoimmune condition, akin to autoimmune encephalitis?
Clinical trial for mechanistic investigation of therapies for Down syndrome Regression Disorder

A collaboration between the Crnic Institute, Children's Hospital Colorado, and Children’s Hospital Los Angeles.

<table>
<thead>
<tr>
<th>Principal Investigators:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Santoro</td>
</tr>
<tr>
<td>Sannar</td>
</tr>
<tr>
<td>Espinosa</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Co-Investigators:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rachubisnki</td>
</tr>
<tr>
<td>Patel</td>
</tr>
<tr>
<td>Kammeyer</td>
</tr>
<tr>
<td>Galbraith</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Consultants:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sanders</td>
</tr>
<tr>
<td>Tartaglia</td>
</tr>
<tr>
<td>Charoensook</td>
</tr>
</tbody>
</table>

Funded by: [NIH](#) [THE INCLUDE PROJECT](#) [NIH](#)

Recruiting now!
Clinical trial for mechanistic investigation of therapies for Down syndrome Regression Disorder

Three goals:

1. To define the relative safety profile of Lorazepam, IVIG, and Tofacitinib in DSRD.

2. To compare the efficacy of Lorazepam, IVIG, and Tofacitinib in DSRD.

3. To investigate potential mechanisms underlying DSRD and its response to therapies.
Conclusions

• Dysregulation of the immune system can cause many health issues in Down syndrome.

• Normalizing the immune system could improve the health and quality of life of persons with Down syndrome.

• Persons with Down syndrome participating in research projects are enabling transformative discoveries that help all people with Down syndrome.
Acknowledgements

Crnic Institute team:
Kelly Sullivan
Matthew Galbraith
Angela Rachubinski
Katie Tuttle
Ross Minter
Kate Waugh
Paula Araya
Jessica Baxter
Kyndal Schade
Michael Ludwig
Keith Smith
Amanda Hill
Belinda E. Estrada
Belinna Guerra
Pamela Navarrete
Ross Granrath
Kayleigh Worek
Jessica Shaw
Neetha Eduthan
Kohl Kinning
Monica Lintz
Lyndy Bush
Chelsea Donohue
Anne Fiala
Haley Sanders
Zdenek Andrysik
Eleanor Britton
Hannah Lyford
And so many more!

JAKi trial team:
David Norris
Cory Dunnick
Liz Wallace
Emily Gurnee
Debbie Fidler
Lina Patel

DSRD team:
Jon Santoro
Elise Sannar
Lina Patel
Jessie Sanders
Ryan Kammeyer

INCLUDE DCC team:
Brian O’Connor
Melissa Haendel
Robert Carroll
Vincent Ferretti
Adam Resnick
Jack DiGiovanna
Huiqing Li (NHLBI)
Charlene Schramm (NLHBI)
Gail Pearson (NHLBI)
Melissa Parisi (NICHD)
Sujata Bardhan (NICHD)
Valerie Cotton (NICHD)
Laurie Ryan (NIA)
Erika Tarver (NIA)
And so many many more!

Many many collaborators at the University of Colorado

The amazing team at the Global Down Syndrome Foundation
Thanks to GLOBAL, today is a new age in Down syndrome research, with new NIH funding opportunities, new cohort studies, new clinical trials, and new big data science efforts. The future is bright!